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Chapter 1

Continual Learning

1.1 Continual Learning and Catastrophic Forgetting

To achieve general artificial intelligence, it is imperative that agents have the ability to learn and

remember a myriad of different tasks and perform reasonably well on them. This is a nuanced

problem in the real-word: quite often, tasks will not be sequentially labelled and the amount of

training examples for one particular task may be less. Tasks may also switch between themselves

unpredictably. Intelligent agents must demonstrate a capacity for continual learning. The agents

must be able to learn new tasks without forgetting the information gained to perform previous

tasks.

Catastrophic forgetting is a phenomenon that is a significant challenge in achieving continual

learning. It occurs when the network is trained sequentially on multiple tasks because the weights

in the network that are important for task A are changed to meet the objectives of task B.

Alleviating catastrophic forgetting is crucial in implementing algorithms for achieving catastrophic

forgetting.

1.2 Experiment 1

Task: Evaluation of catastrophic forgetting problem by taking a network and assessing perfor-

mance upon sequential training on tasks.
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Figure 1.1

1.2.1 Setup

I used the CIFAR 10 dataset and the ResNet architecture for assessing the impact of sequential

training. There were 5 tasks from Task 1 (categories 1, 2) upto Task 5 (categories 9, 10) I

conducted the following three experiments:

• Sequentially trained ResNet from Task 1 to Task 5 while testing on Task 1 in between

training sessions.

• Shuffled the Task on which testing was done (i.e testing on Task 2 as opposed to Task 1)

• Calculating the Upper Bound for the test Task.

I tested on 3 Tasks - Task 1 (category ‘airplane’ vs category ‘car’), Task 2 (category ‘bird’ vs

category ‘cat’) and Task 3 (category ‘deer’ vs category ‘dog’).

1.2.2 Results
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I obtained the graph 1.1 on sequential training. The process went as follows. I trained the first

task (Task 1) and then tested the ResNet on Task 1. I proceeded to then train ResNet on Task

2 and Test on Task 1, followed by training on Task 3 and testing on Task 1 and so on. When I

repeated the experiment with testing on Task 2, the first sequential task above is Task 2. Thus,

the process for the green line is training on Task 2, followed by testing on Task 2, training on

Task 3 followed by testing on Task 2 uptil Training on Task 1 and Testing on Task 2.

Figure 1.2

1.3 Review of existing algorithms

1.3.1 EWC [2]

• This algorithm slows down learning on certain weights based on how important they are

to previously seen tasks.

• There are many possible configurations of weights and biases for task B that will give low

performance. This is key to EWC. While learning task B, EWC therefore protects the

performance in task A by constraining the parameters to stay in a region of low error for

task A.



Continual Learning 4

Figure 1.3

Figure 1.4
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Figure 1.5

• DRAWBACK: Exactly computing the diagonal of the Fisher requires summing over all

possible output labels and thus has complexity linear in the number of outputs. This limits

the application of this approach to low-dimensional output spaces.

SUMMARY: EWC algorithm prevents catastrophic forgetting by taking inspiration from bio-

logical synaptic connections to reduce their plasticity on learning new tasks. EWC slows down

learning for the important weights of the previously learned tasks. This gives better performance

than L2 regularization, which constrains all weights equally and significantly reduces learning on

new tasks. EWC treats the parameters as probabilistic distributions and assumes all relevant

information for the previously learned task is in the posterior probability of the parameters given

the previous data.

1.3.2 SI [5]

• Greatest disparity between ANNs and the biological neural network lies in the complexity

of the synapses.

• In ANNs, individual synapses (weights) are typically described by a single scalar quantity.

On the other hand, individual biological synapses make use of complex molecular machinery

that can affect plasticity at different spatial and temporal scales
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• Simple scalar 1D synapses suffer from catastrophic forgetting

• Usage of 3D state space to alleviate catastrophic forgetting

• In our model, the synaptic state tracks the past and current parameter value, and maintains

an online estimate of the synapse’s “importance” towards solving problems encountered in

the past

• In our model, the synaptic state tracks the past and current parameter value, and maintains

an online estimate of the synapse’s “importance” towards solving problems encountered in

the past

SUMMARY: SI algorithm is similar to EWC in that it penalizes the update of the weights

(”synapses”) that are the most important to previous tasks. However, while EWC does this in

an online fashion after the completion of the training task, SI does this in an online fashion

over the entire learning trajectory. The results from EWC and SI are comparable over the split

MNIST dataset.

1.3.3 GEM [3]

• GEM leverages an episodic memory to avoid catastrophic forgetting and favors positive

backward transfer.

• GEM leverages an episodic memory to avoid catastrophic forgetting and favors positive

backward transfer.

• Memory: m = M/T samples of all tasks are kept in the memory. These samples are the

most recent ones in the paper.

• Episodic: Replay over the memories to make sure accuracy on previous tasks is not damaged

as we learn new tasks

• Gradient: Checking that the gradient doesn’t run the wrong way on learning tasks, i.e. we

do not unlearn previously learned tasks.

• Gradient update rule: Constrain your update for current task to not conflict with update

for the previous task. If the gradient is going the wrong way, then take the vector and

project it to the closest gradient that doesn’t go the wrong way. The optimization is

formulated as a projection onto a cone.

• DRAWBACKS: GEM assumes access to task boundaries and an i.i.d. distribution within

each task episode. It divides the memory budget evenly among the tasks. i.e. m = M/T

slots is allocated for each task, where T is the number of tasks. The last m examples from
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each task are kept in the memory. This has clear limitations when the task boundaries are

not available or when the i.i.d. assumption is not satisfied.

• Practical use of GEM is impeded by several limitations: (1) the data examples stored in

the episodic memory may not be representative of past tasks; (2) the inequality constraints

appear to be rather restrictive for competing or conflicting tasks; (3) the inequality

constraints can only avoid catastrophic forgetting but can not assure positive backward

transfer.

SUMMARY: GEM leverages an episodic memory to avoid catastrophic forgetting. It provides

negligible to positive forward transfer and favors positive backward transfer, something which

does not happen with algorithms like EWC and SI. However, GEM does not leverage task

descriptors to aid zero-shot learning.

1.3.4 GSS [1]

• Formulates sample selection as a constraint reduction problem based on the constrained

optimization view of continual learning.

• Prior focused: The parameter gradually drifts away from the feasible regions of previous

tasks, especially when there is a long chain of tasks and when the tasks resemble each other

• The replay-based approach stores the information in the example space either directly in a

replay buffer or in a generative model

SUMMARY: GSS uses replay to enhance continual learning. Parameter gradients are minimized

over the memory buffer M of samples. Selection of memory buffer becomes an important research

problem. A greedy algorithm is also proposed to enhance efficiency
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Continuous Domain Adaptation

2.1 Continuous Domains

In real life, many domains have continuous features or actions. For example, the various phases of

day and night, or the continuous range of human age. Continual learning is especially important

and practical in continuous domains, since most domains in the practical world are continuous.

Imagine a tumor detection system for lungs trained on lungs of patients in their mid-twenties.

Its efficacy may be severely impacted if tested on lungs of patients who are sixty plus. Such a

scenario is called a domain shift. A visual recognition must adapt to different domain shifts and

preserve accuracy.

2.2 Asymmetry in efficacy on domain shifts

To understand whether there is any asymmetry in accuracy when the start points of the two

domains are flipped, the following experiment was carried out.

The continuous domain is chosen to be the rotation of an object along the z-axis. To simulate a

continuous domain, a step size of 5 degrees rotation was chosen to generate the images. After

generation, every step size was divided into a continual learning task.
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Figure 2.1: Source: Wang, H., He, H., & Katabi, D. (2020). Continuously indexed domain
adaptation. arXiv preprint arXiv:2007.01807. [4]

2.3 Blender

To generate the images for training, Blender was used. Blender is a free and open source 3D

rendering software, and is popularly used to generate life-like objects that can be used to create

machine learning datasets.

2.4 ShapeNet

ShapeNet is a richly annotated dataset of 3D shapes. It enables research in computer graphics,

computer vision, robotics, and other related disciplines. ShapeNet is a collaborative effort

between researchers at Princeton, Stanford and TTIC. The ShapeNet objects were imported in
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Blender, and 36 rotated views from 0 degrees to 180 degrees were produced. At every view, 20

random scaling radii were applied drawn from a uniform distribution to increase the complexity

of the dataset.

2.5 PseudoCode

# Preprocessing

-> Generate 36 views (180/5) for each instance of each class with camera-distance variation

/scaling variation using np.random()

-> Split the generated instances into test-train (30:10)

# Training

-> For every 5 degree stepsize define 1 task , total 36 tasks

-> For task i in num_tasks:

-> Shuffle all available instance images and train them on a CNN

-> Test CNN on task i, record accuracy

-> Test CNN on tasks [0,i-1], record accuracy

-> Restart training but flip the order of tasks and record accuracies

-> Average out accuracies over all class instances and plot
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2.6 Renders
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